Name \qquad Date \qquad

Advanced Algebra II - Assignment 4-4

The coordinates of Triangle MAE are $\mathrm{M}(-3,2), \mathrm{A}(1,5)$ and $(3,-6)$

1. Show a matrix addition that would shift Triangle MAE 1 unit to the left and 3 units up. Include the matrices you add as well as the Sum Matrix.
2. Show a matrix multiplication that would reflect Triangle MAE across the line $y=x$. Include the matrices you multiply as well as the Product Matrix.
3. Show a matrix multiplication that would rotate Triangle MAE 180°. Sketch Triangle MAE as well as the resulting triangle when Triangle MAE is rotated.

7-185 Perform the following multiplications without using a calculator. If the product cannot be found, explain why.

2	3	7	4
5	1	0	6
			1

7-187 Perform each of the following matrix operations without using a calculator. If the operation is impossible, explain why.
a. $\quad \begin{array}{lllll}4 & 9 & 2 & a \\ 6 & 0 & 5 & b \\ c\end{array}$
b. $\quad 2 \begin{array}{ccc}4 & 9 & 2 \\ 6 & 0 & -5\end{array}+\begin{array}{ccc}1 & 0 & -3 \\ 0 & 4 & 1\end{array}$
c. $\left.\quad \begin{array}{llll}a & b & & \\ c & d\end{array}\right]$
d. $\quad \begin{array}{ll}a & b \\ c & d\end{array}+e \quad f$

7-200 Let A and B be the matrices defined below. Complete each of the following matrix operations.

$$
\mathrm{A}=\begin{array}{cc}
4 & -1 \\
7 & 2
\end{array} \quad \mathrm{~B}=\begin{array}{cc}
-5 & 0 \\
3 & -8
\end{array}
$$

a. $\quad \mathrm{A}-\mathrm{B}$
b. $\quad 5 \mathrm{~A}$
c. AB
d. BA

